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The rotating flow of a separating mixture within an axisymmetric container is 
considered with emphasis on the pure fluid layer adjacent to the inclined ‘bottom’ 
boundary from which particles are removed by centrifugal buoyancy. Within the 
framework of ‘ mixture ’ (‘diffusion ’) model and when the relative density difference, 
the Ekman number E and particle Taylor number p are small, i t  is shown that the 
behaviour of that layer is governed by E = Eb, lcotyBI//3 (where aI is the volume 
fraction of the dispersed particles and yB is the elevation angle of the bottom wall 
with respect to the centrifugal force). If E is small the layer thickens quickly into an 
inviscid core, in accordance with previous studies. However, novel features show up 
for E large or 0(1), when the viscosity-induced Ekman suction is able to counteract 
the separation velocity. In  the former case the pure fluid layer is thin and quasi- 
steady, and the remaining part of the interface is essentially perpendicular to the 
force field, in close apparent resemblance to the analog gravitational process. In the 
latter case, a thin quasi-steady layer and a continuously thickening core of pure fluid 
coexist in the same vessel. 

1. Introduction 
The separation of a two-phase mixture in a force field is a fascinating process with 

a large variety of industrial applications. Of particular interest is the settling in large 
(as compared to the typical width of boundary and sediment layers) containers with 
walls inclined with respect to the field. Gravitational sedimentation in such vessels 
is often enhanced by a special convective phenomenon, the ‘Boycott effect’. 
Although known to fluid dynamicists for more than 60 years, this effect has been 
satisfactorily understood and the corresponding flow field has been properly analysed 
only recently, in particular by Acrivos & Herbolzheimer (1979) and Schneider (1982). 
The most striking result concerns the shape and motion of the interface between the 
clean fluid and the mixture. First, the pure fluid layer beneath the downward-inclined 
wall is thin and essentially steady, see section AB in figure 1. Second, the remaining 
part of the interface, i.e. section BG in figure 1,  is effectively horizontal and falls with 
a vertical velocity considerably greater than in a similar non-inclined vessel. Acrivos 
& Herbolzheimer (1979) studied the pure fluid layer dominated by a viscous- 
buoyancy balance and Schneider’s (1982) investigation focused on a convection- 
buoyancy equilibrium. 

This remarkably simple shape of the interface facilitates the straightforward 
calculation of the volumetric sedimentation rate dV’;S/dt* and of the dh*/dt* by 
explicit formulae usually referred to as the PNK (Ponder-Xakamura-Kuroda) 
theory, cf. Appendix B. For the configuration in figure 1 it essentially asserts that 
dV7;S/dt* is proportional to the instantaneously horizontal projection AC’ and 
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FIGURE 1. Gravitational settling of heavy particle mixture in inclined tanks. 

dh*/dt* is augmented by a factor of (AC’IE) as compared to the uninclined 
vessel. 

The understanding of the centrifugal separation in a geometrically similar device 
is obviously of great significance. However, very little was done on this topic until 
quite recently, probably because of difficulties in both experimentation and theory 
of rotating two-phase flows. 

The paper of Greenspan & Ungarish ( 1 9 8 5 ~ )  considered this problem under 
assumptions similar to those of Acrivos & Herbolzheimer (1979) and of Schneider 
(1982), i.e. that inertial and viscous effects are negligibly small in the main mixture 
core and the relative (slip) velocity between the phases is parallel to the buoyancy 
force (see discussion following (2.1 b)) .  It argued that the Coriolis forces may induce 
a flow pattern surprisingly different from the gravitational one. In  axisymmetric 
containers these forces dominate the motion in the core and, consequently: (a) the 
radial velocity of that portion of interface perpendicular to the centrifugal force 
cannot be augmented as compared to the settling in a straight container ; ( b )  the pure 
fluid layer, formed on the inclined wall from which particles are removed by the 
buoyancy force, is time dependent and thickens considerably during the process. On 
the other hand, in a sectioned rotating container, where the azimuthal motion is 
blocked, the Coriolis terms are less significant and the flow bears more similarity to 
the gravitational case. The qualitative results have been essentially confirmed by 
experiments. Amberg & Greenspan (1987). 

Subsequently, Greenspan & Ungarish (1985 b)  quantitatively analysed the flow 
field and the motion of the interface in the axisymmetric case assuming that the pure 
fluid and the mixture are inviscid bulks matched by fully developed Ekman layers. 
They indicated that these bulks possess considerable rotation (the heavier one 
retrograde respective to the container and vicc versa) and that the separating 
interface is not perpendicular to the centrifugal force. The centrifugal analog of the 
PNK theory (cf. Appendix B) is not valid in these circumstances. 

The present paper studies additional aspects of the two-phase viscous rotating 
shear layers and their implications on the velocity field and on the shape and motion 
of the interface in an axis mmetric container. In  particular, i t  reveals the significance 
of the parameter 3 = (Ew, (cot y”I//3), where E is the Ekman number and p is the 
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FIGURE 2. Schematic description of centrifugal separation in conical container, and analog 
process in gravity ( a )  light particles ; (b )  heavy particles. 
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(modified) Taylor number of the particle, both defined in $2, a, is the dispersed 
volume fraction in the mixture and yB is the elevation angle of the wall from which 
particles are removed with respect to the centrifugal force. If this parameter is small, 
the inviscid bulk motion described by Greenspan & Ungarish (19853) prevails. For 
large values of E, however, the viscous forces become more pronounced and the pure 
fluid layer adjacent to an inclined boundary remains thin and quasi-steady, while the 
remaining portion of the interface is essentially perpendicular to the centrifugal 
force. I n  this case the appropriat'e modification of the PNK theory can be applied. 
When E is of order unity, both a thin viscous quasi-steady layer and a thick 
inviscid time dependent core of pure fluid show up in the same container, cf. figure 
2. In  any case, the thickness of the quasi-steady pure fluid layer cannot exceed 
n(,u.,*/p,* Q* cos yB)i where Q* is the angular velocity of the container, ,u.,* and p,* are 
the viscosity and density of the fluid. 

These predictions have been tentatively confirmed by experiments with the 
separation of light particles in a conical transparent container (Greenspan, private 
communication). Values of E - 0.8-1.5 were obtained in a system essentially similar 
to that used by Amberg & Greenspan (1987), where E - 0.05. The presence of a thin 
pure fluid layer for the larger values of E only was clearly observed. At this time 
there is insufficient information for a more significant and quantitative comparison. 

A particular configuration of the present theory, not elaborated here, concerns 
separation in a container whose top and bottom walls are parallel conical disks. This 
case is closely related to  the study of Amberg et al. (1986). However, these authors 
restricted their analysis to narrow disk spacings and, implicitly, to  small values of 
E.f Under these circumstances, batch separation is completed in a much smaller 
time interval than the one considered here. Therefore, Amberg et al. focused 
attention on the time dependent growth of the Ekman layers which are regarded as 
quasi-steady in the present paper. Nevertheless, the results of both investigations are 
consistent in the domain where overlapping is expected. 

2. Formulation 
Consider the time-dependent motion of a mixture of two incompressible 

constituents. The dispersed phase consists of small particles (or droplets) of 
approximately constant radius a* and occupies the volume fraction a. The averaged 
flow variables of the continuous and dispersed phase are denoted by subscripts C and 
D, while a variable of the mixture is unsubscripted with the exception a = aD (e.g. 
the densities, p:, pz and p* = ( 1  -a) p; +a&). A superscript asterisk designates a 
dimensional variable. 

The cylindrical coordinate system ( r ,  0, z )  is attached to the container rotating with 
Q*i, cf. figure 3. The outer radius of the tank, rz,  is used as a reference length, and 
zT( r ) ,  zB(r) and ri define the top, bottom and inner solid boundaries. 

Special interest will be focused on the flow in the proximity of the top, bottom and 
interface surfaces, designated respectively by upper index T,  B and L', when 
necessary. To each one, local boundary-layer coordinates (5,8, SC) are attached as 
specified in 54. In general, the unit vectors, R ,  normal to the axisymmetric surfaces 

Two major parameters of Amberg et al. are, in the original notation, the gap Taylor number, 
T, and the reduced boundary-layer volume flux, E ,  which turns out to bear the features of the 
present 8. The present theory deals with T > ( 2 ~ ) ~  and H > 1, while Amberg et al. are mainly 
concerned with smaller values of these parameters, especially of the latter one. I n  addition, these 
authors investigated a continuous settling process which is irrelevant here. 
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z = zB(r) 

z = S(r, t )  

FIGURE 3. Illustration of geometrical definitions. 

are defined as pointing upwards, i.e. f i - z"  > 0 always. The appropriate inclination is 
designated by the sharp angle y = - sin-l ( f i s t ) ,  -$IT < y < ire, which is positive for 
inwardly tilted surfaces and conversely, as inferred from figure 2. 

To accommodate the analysis to both heavy and light dispersions, it is convenient 
to require that the buoyancy pushes away particles from the bottom wall. In  other 
words, yB > 0 for heavy particles and vice versa. The top boundary either collects 
particles or is parallel to the force field, yT = 0. 

Let q* = (ap:q;S+ (1 -a)pg q$)/p*  be the mixture mass velocity and let 
j*  = aq;S + (1 -a) qg be the corresponding volume flux. The components of q* in the 
( r ,  8, z )  system are u*. v*, w*. The primary variable of the process under investigation 
is the relative velocity, qg( = qg-q;),? which is subsequently approximated by 

where (2.2a) 

(2.2b) 

is the particle Taylor number and p(a) is the ratio of the effective viscosity of the 
mixture to that of the clear continuous fluid, ,LA.,*, to be specified below. Equation (2.1) 
reflects the balance between centrifugal buoyancy and Stokes drag on the particle. 
This balance may be considerably affected by Coriolis forces when /3 is not small, see 
Ungarish 8: Greenspan (1984b), figure 2. (Note that this parameter measures the 
ratio of the particle size to the thickness of the Ekman layer, or equivalently the ratio 
of the Coriolis force and Stokes drag on a particle. Thus, while the Coriolis terms are 
essential in the flow field balances, they are considered as unimportant in the local 

t Several useful kinematic relationships between velocities and fluxes are given in Appendix A. 
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motion of the dispersed particle relative to the fluid.) However, the subsequent 
analysis of the Ekman layers strongly relies on a* being small compared to the 
typical thickness (,@/p; a*);. This requirement obviously implies /3 6 1 which 
vindicates the employment of (2.1). The leading features of p(a) appear in the 
correlation derived by Ishii & Zuber (1979) 

where aM is the maximal packing volume fraction. This particular choice, however, 
is not essential in what follows. 

lntroduce dimensionless variables obtained by scaling the lengths by r,* (the outer 
radius of the container), velocities by IeI/3Q*r,* (the typical value of qg) ,  time by 
(IeI/3Q)p' (the timescale of radial separation), density by p: and the pressure by 
&1e1 ( Q Y , * ) ~ .  The equations of continuity are 

aa 
- + V * a q ,  = 0, 
at 

V - j  = 0. (2.5) 

The rotational accleration terms are readily incorporated in the momentum 
equations of the mixture as developed, for instance, by Ishii (1975, chapter lo), and 
the stress term is assumed to be that of a Newtonian fluid. In  dimensionless form this 
reads 

11 (1  +€a) { 2z x q + I4 P E + i V ( q .  q )  + (V x q )  x q 

1 S 
= - - v p + - a r f - E p ( a )  [V x V x q -  (f) V ( V . q ) ]  - Iel pV- 

P P  
where p is the reduced pressure, 

s = e / I 4  

. and 

(2.6) 

(2.7a) 

(2.76) 

is the Ekman number. Gravity is neglected compared to the centrifugal acceleration. 
The last term in (2.6) arises from the diffusion of momentum due to  the relative 
motion. Note that the equations (2.4)-(2.6) properly reduce to the pure fluid case 
when a = 0. 

Using the dimensionles form of (2.1), 

qR = s&(a)]-' ( 1  -a)  rr", (2.8) 

and the kinematic relationship qD = j +  (1 -a )  qR the equations of continuity 
(2.4)-(2.5) give 

aa 
-+++s@'(a)rq-Va at = -2s@(a), (2.9) 

where @(a) = a(1 -a)"&). (2.10) 

Thc apparent boundary conditions are : no slip and no penetration on thc solid walls. 
The initial conditions are solid rotation (for simplicity) and a(r , t  = 0) = a(0) = 

constant through the container. 
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The objective is to calculate q ( r , t )  and a(r , t )  from the system (2.5)-(2.10) 
supplemented by the kinematic relationship (A 8) between j and q which for the 
present case yields 

(2.11) 

In  pFrticular, attention is focused on the description of the shape and motion of the 
interface between the regions of mixture and pure fluid. This is a formidable task, 
and further simplifications are necessary for progress. 

A major simplification is the linear flow obtained when the convective inertial 
terms in (2.6) are negligibly small. This limit represents a small deviation from solid 
rotation and can be shown to correspond to J E ~  < 1 (i.e. 1 ~ 1  turns out to  be the 
representative Rossby number). The diffusion of momentum represented by the last 
term in (2.6) is negligible as compared to the buoyancy term because /3 and [el are 
both small. Considering E < 1,  the solution of the remaining system is facilitated by 
decomposing the present flow field into inviscid components and viscous ' correc- 
tions'. The latter are induced mainly by shear layers of Ekman type. However, 
this paper indicates that in a certain parameter range t'he 'vertical ' Ei and Ei viscous 
regions may contribute significantly to the final flow pattern. It should be born in 
mind that the choice of reference velocity implies qR.? = 0 ( 1 ) ,  but the order of 
magnitude of the components of q turns out to be different; in particular, the 
azimuthal and axial velocities are O(a//3) and O(Ei(a//3)). 

If the motion is stable, the flow field is partitioned into three distinct regions 
(figure 3 ) :  the mixture, the pure fluid (formed adjacent to the bottom wall from 
which particles depart under the action of the centrifugal buoyancy force) and the 
sediment layer (formed on the opposite solid boundary). The first and second region 
are hereinafter referred to as I and I1 and the corresponding variables subscribed 
accordingly when necessary. In  the subregion 11' of I1 the pure fluid occupies the 
entire axial interval between the top and bottom boundaries. This fluid apparently 
has a passive role in the separation process and will not be considered in detail. 

The motion of the sediment is believed to be rather insignificant in the present 
configuration, provided that (./aM) is fairly small. Consequently, boundary 
conditions for regions I and I1 are applied directly on the solid wall. 

Obviously, aII = 0. The value of a in region I is obtained via the solution of (2.9) 
along characteristic paths on which 

(2.12) 

Since initially aI  = a(0)  = constant,it follows that (2.12) is valid in the entire region. 
Thus aI = a,(t) can be calculated directly by (2.12). 

The interface between regions I and I1 is regarded as a sharp discontinuity, a 
kinematic shock, described by the surface C(r ,  t )  = 0 whose velocity in the rotating 

(2.13) 
system is qs. It follows: 

The continuity of the dispersed component's flux ctqD across the interface 

(2.14) 
implies 

Here + and - denote the sides of the interface adjacent to  regions I and 11. Since 

(2.15) 
aI1 = 0 this gives: 

az -+qq,*vz = 0. 
at 

[a(q,-qq,)]'-WC = 0. 

qs- wz = qD; WE. 
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Substituting (2.15) into (2.13) and using the kinematic relationship (A 3) and 
equations (2.8) and (2.10) yield the following useful equation of motion of the 
interface : 

(2.16) 

subject to the condition that L'(r, t  = 0) coincides with the container's boundary 

3. The inviscid component 

are designated by the superscript 'inv '. 
Consider the flow variables for E = 0. When necessary, the resulting components 

The appropriate linear momentum equations are 

1 s a  22"xq1 = - -VpI+-a,rr ,  
P P 

(3.2) 
1 

22" x qll = --vp,,. 
P 

The axial (2") component of these equations indicates that  p ,  and p I 1  are not 
functions of z .  Moreover, since the viscous layers adjacent to the interface cannot 
support an axial pressure difference i t  is concluded that : 

The result of combining the last equation with the azimuthal component of 
(3.1)-(3.2) is: 

In addition, (3.1)-(3.2) give 
UI = UII = 0. 

(3.4) 

(3.5) 

(3.6) 

A more rigorous analysis shows that actually 
suggest the introduction of 

= O ( ~ Y ) .  Equations (3.4)-(3.5) 

%,I, = - ~ w I , I I ( r >  t ) ,  (3.7a) 

with WII = WI + s ,  (3.7b) 

2P 

where q I I  are O(1) variables. 
Thus, to this order of approximation, the inviscid radial motion is zero, but a 

considerable inviscid angular velocity component O(a,/P), shows up. 
These inviscid components dominate the velocity field in the cores of regions I, 11, 

whose axial dimension is large compared to Ei. However, the determination of w ,  the 
fulfilment of boundary conditions, the smoothing of the discontinuity wI - wII across 
the interface, the calculation of the axial component w (which is critical to the motion 
of the interface) and the establishment of conditions under which the initially thin 
region I1 develops into a core require the analysis of the viscous corrections induced 
by the thin shear Ekman layers. This is performed in the next section. 
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4. The viscous Ekman layer ‘corrections’ 
These shear layers form on or around the surface z =  a ( r )  (top and bottom 

walls and interface). It is therefore convenient to analyse them in the boundary- 
layer coordinate system [f,e,6y] as sketched in figure 4. It is anticipated that 
6 = (p(a)E)a. The curved coordinate 6 = 6(r)  measures the distance from the axis 
of rotation along the intersection between the surface and the meridional plane 
0 = constant; c is in the same plane, perpendicular to and pointing ‘upwards’. 
The metric coefficients are, approximately : 1 ,  r(LJ, 8. For additional details see Green- 
span (1968, chapter 1.6). 

Let y be the local angle of inclination of the surface, (yI = -sin-’ (i-f),  and denote 
by (qs, qs, as) the velocity components. 

Boundary layer ‘corrections’, denoted by tildes, are added to the inviscid balance 
discussed in the preceding section. Note that & = 0. Moreover, it is postulated that 
the relative velocity correlation (2.8) is unaffected by the strong shear in the present 
layers. Upon substituting in the quasi-steady? linear form of (2.5)-(2.6) and 
eliminating the ‘inviscid’ balance one gets, to leading order in E ,  

(4.4) 

Since the inviscid azimuthal velocities are - ar/2p, it  is convenient to introduce:$ 

Equations (4.1) and (4.4) imply that @ and gs are small; therefore, the underlined 
terms in (4.2)-(4.3) are neglected, and the solution of the remaining balance 
yields : 

where k = (cosy)i(l+i)  (i = 2 / - 1 ) .  

+ i; = A ek5 + B epkC, (4.6) 

The (complex) O(1) coefficients A and B are in general functions of r and t ,  

A useful quantity in the subsequent calculations is the volume transport in the [ 
determined by boundary conditions and matching requirements. 

direction. In  the shear region 0 6 5 6 s” this can be represented by 

(4.7a 

t The typical response time of these regions is IelP, i.e. about one revolution of the system. 
$ Hopefully, no confusion arises between the velocity component fl and the typical height H .  
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0 = constant 

FIGURE 4. The boundary la,yer coordinates on z = @ r ) .  

where, according to (4.6), 

I [A(ekllSI - 1) - R(e~kllsl - l)] . (4.7 b )  

Note that 0 and 2 include thc sign determined by the main direction of @. 
lntegrating (4.1) and using Leibniz's formula yields tJhe normal velocity component 
a t  the 'edge ' of the shear layer 

The foregoing results are subsequently utilized in the different flow regions, subject 
to matching and boundary conditions as follows 

qinv + 4" = 0 on solid walls, (4.9) 

Q.f+ig-e = 0 for Is"\ --f 00 (if applicable). (4.10) 

[p+( = 0 1 
on interface. 

(4.11a) 

(4.11 b)  

In  addition, global volume conservation is required. For the control volume of 
figure 5, with the aid of (Z. l l ) ,  (4.5), and (4.7), this reads: 

(4.12) 

where the summation is performed over all the Ekman shear layers cut by the 
cylinder r = constant. In  view of (3.6) and (4.7) the contributions of the 'inviscid' 
and 'viscous' terms in (4.12) are O(cH)  and O ( E f / p ) ,  respectively.? I n  the casc 
A = Ei/IeIPH 9 1 considered here, the contribution of the first term is small. Thus, 
to leading order in A, upon employment of (4.7a), the volume conservation reads 

t See footnote $ on p. 35. 
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FIGURE 5. Various systems employed in the matching analysis. (Here s = - 1 . )  

where, again, summation is performed over all the shear layers cut by r = constant. 
Recall that 6 = (p(a))$Ef with a = a,(t) in the mixture and a = 0 (thus, p(a) = 1) in 
the pure fluid. 

5. Thin pure fluid layer - the matched flow field 
Consider the configuration of figure 5 ,  where the thickness of the pure fluid layer 

is O(E4). This situation is typical of the initial stage, a t  least. 
At the collecting top plate -5  extends into the mixture core I and fi can be 

regarded as -a. Applying the conditions (4.9)-(4.10), the coefficients of (4.6) and 
the corresponding volume transport (4.7 b )  read 

(5.1) A: = -iul; B: = 0;  $T = - u i / 2 ( c o s y ~ ~ .  

Examine next the flow near the bottom. Since the location of the interface differs 
only by an O(Ea) amount from zB(r), the pitch angle yz can be approximated by the 
known value yB. The shear layer on the interface induces the decaying viscous 

L 

correction 
PI + iG, = Bf exp ( - kBcf) 

in the mixture region cf 2 0. The viscous component in the pure fluid region 

Here kB = (cos yB) i ( l+ i ) ,  and (4.6) and (4.10) are employed. Applying the no-slip 
conditions (4.9) a t  eII = 0 and the continuity requirements (4.11) a t  cf = 0 and 
cII = s" yields, after some arrangement : 

A I1 + 4, + iw,, = 0, (5 .2a)  

-Bf+AI,ekBBS+B I 1  e-lcB9 -i(wI-uII) = 0, (5 .26 )  

- Bf + A ekB9 + R,, c-lcB9 (5.2C) 
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here w ~ , , ~  refer to the inviscid component. Also, recall the 'inviscid' 
(3.7) 

The volume conservation (4.13) upon substituting (5.1) and (5.2a, c ,  d 

0, = WII - s. 

2 Re {( 1 -i) AII} + (1 + R) w,  = - s, 

where 

relationship 

( 5 . 2 d )  

gives 

( 5 . 2 e )  

(5 .3)  

Thus, the linear system (5.2) practically defines the five velocity field functions w,, 
w,I,AII,BII,B~ in terms of the parameter x", which represents the a t  present 
unknown thickness of the pure fluid layer. More explicit expressions are sought for 
further investigation of the flow. To this end, after some algebra, a single equation 
for A,, is obtained as follows: 

m-] R (5.4) 
Re{(l-i)A,,} =-is 

l + R  ' 
2m 

A11[(2 + m) e2lcB3- m] + i - 
l + R  

where m = (p(a,));- 1. 

However, simple specific expressions for the coefficients A,,, etc. can be obtained for 
m = 0 only (this corresponds to the dilute limit aI --f 0 or to  the assumption that the 
effective viscosities of pure fluid and mixture are equal). Thus, for ,u(a,) = 1, 
equations (5.4), ( 5 . 2 )  and (4.76) give: 

(5.5) I A - e-kBs, 
I1 - 

- S  wI = - [ l -Re{(l+i)  e-lcBS}] = wII-s, 
1 + R  

B,, = - i(s + w,)  + ii8 e-kBf. 

Further substitution into (4.7b) yields the following important result : -soII reaches 
its absolute maximum as Rcrit = n/(cos yB)i, where 

(:f. figure 6).f This value differs only slightly, by the e-* terms, from the asymptotic 
S- t  cc limit. A similar behaviour of GI, has been found for the more realistic case 
p(aI) > 1 ;  Rcrit is unchanged but IQIIlmax is somewhat larger than the value of 
(5.6). 

I n  the foregoing analysis the variable 8, which measures the local instantaneous 
thickness of the pure fluid layer on the coordinate <, enters the solution as a 
parameter. I n  the actual flow field x" = x"(& t )  is defined by the motion of the 
interface, equation (2.16). I n  the boundary-layer coordinates of the bottom plate the 
interface is expressed as w, t )  = 51, - x"(L t )  = 0, (5.7) 
and the appropriate equations of motion, in account of (4.5), reads 

Here, of course, P and @ are evaluated a t  <,, = s". 

( 1986). 
t For parallel plates R = 1 in which case (5.6) is consistent with ( 3 . 1 ~ )  of Amberg et aE. 
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$ 0.6 
I 

I 

0.2 

0 1 2 3 

S(C0S y”)i 

4 

FIGURE 6. Volume flux and inviscid angular velocity vs. local thickness of the pure fluid layer 
for cos yB/cos yT = $2/3. 

Substituting (4.8) (with boundary condition zero on the plate) into (5 .8)  and 
expressing the dot products in terms of yB yields 

This equation expresses the critical features of the thin pure fluid layer at the 
bottom plate. The right-hand side O(1) term reproduces the tendency of the 
dispersed buoyant particles to depart from the plate. (Recall that a consistent 
definition requires yB > 0 for light particles s < 0 and vice versa, therefore this term 
is always positive.) The only term of comparable order of magnitude on the left- 
hand side is the second one, provided that (Eia, cos yB/2P) = O(sin yB) ; this term 
represents the ‘suction’ of the Ekman layers. The last expression on the left-hand 
side is always negligible. The first term of (5.9) indicates that x“ varies on the time 
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scale Ei, which is very short compared to the separation interval.? Consequently, if 
the pure fluid layer remains thin it is quasi-steady and satisfies the balance: r$) cos yB - d -  r2Qlr = Jsin yBI __ @(4 r2 

dr  "1 
(5.10) 

However, under circumstances to be clarified below, the Ekman layer suction may 
be too weak to satisfy the requirement (5.10). In this case the term Ei(afl/at) takes 
over in (5.9), which implies a quickly thickening layer. 

Let rl be the starting position (f i = 0, &,, = 0) of the thin layer, which corresponds 
to rl for light particles and to 1 for heavy ones, cf. figure 2. Integrating (5.10) between 

(5.1 1) 

which implicitly defines S"(r,t) via the relationships for a,(t) and ~,,(fl) obtained 
previously. 

First, consider the implications of (5.11) for the light particle mixture. Typically, 
8 (and $,,) increase with r ( > ri) until some T~~~~ where a,, reaches its maximum and 
fl,,,, = n/(cos yB(rcrit))i. Beyond this rcrit the balance (5.11) can no longer be satisfied, 
i.e. the pure fluid layer will not remain thin. 

Secondly, observe that for hcavy particles mixtures Q,, is negative, i.e. the flux is 
towards the centre. Equation (5.11) indicates that  x" increases as r (and a,,) 
decreases, until, again, some rcrit where &,, is minimal. For r < rcrit, equation (5.11) 
has no solution which, again, attests the lack of a thin pure fluid layer in this 
domain. 

Since I&,,I,,, is of order unity i t  follows that (rl-rcritl - O((Eb,/pj cotyB). This 
conclusion is worth emphasizing: the radial extent of the pure fluid thin layer is 
restricted to O(E& cot yB//3) due to the limited capability of the Ekman layers to 
transport the fluid sucked into this region. This limitation has no counterpart in the 
gravitational settling. In  this respect i t  is instructive to consider an alternative 
purely kinematic derivation of (5.11) as follows. The pure fluid volume balance for 
the region bounded by r ,  r l ,  the steady interface and the bottom plate is: 

(5.12) 

where (4.7) has been employed and j ,  is taken a t  the interface. Using the kinematic 
relationship (A 11), equations (2.8), (2.10) and accounting for the condition 
j,,-rl = 0 it follows that a t  the interface : 

Substituting into (5.12) and rearranging yields, again, (5.11). It is now more evident 
that the last term of (5.11) represents the rate of suction into the pure fluid layer, 
which can be balanced as long as the Ekman layers are able to carry it away in the 
radial direction. 

t Kevertheles;, the Ekman balances are quasi-steady because (5.9) is of interest for (Ef/p) > 1, 
which implies En $ IeIP. See footnote t on p. 35. 
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Since ri and the representative value of (E&q coty"/P) can both vary in a large 
range for miscellaneous systems, it is convenient to distinguish between two typical 
cases : 

(i) lrcrit - r,l 2 1 -Ti, i.e. the pure fluid layer between the bottom wall and mixture 
is thin everywhere. The solution of the present section covers the entire flow of 
interest. The shape of the interface apparently resemblcs that of the gravitational 
settling. 

(ii) lrcrit - r l (  < 1 - ri. The present quasi-steady thin, viscous, pure fluid layer 
expands into the 'thick' bulk considered in the next section. 

For both cases, however, it should be born in mind that lrcrit - rll provides the locus 
beyond which a thin pure fluid layer cannot prevail. The actual detachment position 
of the interface is either at rd ( t )  or at the 'vertical' front r F ( t ) ,  according to the 
shortest distance from rl,  cf. 97. 

6. Thick pure fluid layer - the matched flow field 
Beyond rCrit obtained in the previous section, the flow field can be represented by 

two inviscid bulks I and IT, each of them bounded by distinct Ekman layers, see 
figure 7. This case was analysed by Greenspan & Ungarish (1985b). Some relevant 
results are rederived here (in a slightly different approach) for the sake of 
completeness. 

The tangential flow 'corrections' in shear layers are given by (4.5)-(4.6). 
Superposition on the inviscid components (3.6)-(3.7) and employment of (4.9)-(4.11) 
(note that Is"l+ a3 for all the concerned shear regions) give the coefficients A ,  B of 
(4.6) for every layer in terms of wI or oII; is subsequently obtained via (4.7b). The 
results are summarized in table 1, where pi = (p(aI)) i  and y = y ( r )  is the local 
inclination of the appropriate surface, measured counterclockwise from the plane 
z = constant. Note that a t  the interface = 1°F = 0. Substituting the foregoing 
results into the volume conservation requirement (4.13)y-on account of (3.7 b )  
results : 

s 
w1 = -~ W,I  = s+w,, (6.1) 1 + R '  

where, again 

Let the interface be : 
C(r ,  t )  = 2 - S ( r ,  t )  = 0, (6.2) 

with n = V C  = 2- (ah'/ar) i a n d ,  obviously, cos yz = [1+ ( tI~S/ar)~]-; .  To determine its 
motion by (2.16) the value of q.ri on Z is required. To this end consider the volume 
balance in the control volume of figure 8 

which, on account of (4.7), table 1 ,  (3.6) and (6.1) yields 
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FIGURE 7 .  Typical configuration of thick pure fluid layer (bulk), s = - 1. 

(c; 
i-t- 4 dr I- 

FIGURE 8. Control volume for calculating the noimal velocity of interface, s = - 1. 

Since on the interface qII = qI and f i  = (VZ) cosy', the substitution of (6.4) into 
(2.16) g' ives : 

(6.5) 

subject to the initial condition S(r ,  0) = zB(r). Actually, when 8-2" = O(Ea) an 
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Location of layer Notation 6jEi A B 2( cos 7); 0 
Top of container A:, etc. - io, 0 

Above interface Af,  etc. 0 

S p  
Below interface A& etc. 1 -1- 0 

Bottom of container A:, etc. 1 0 - io,, - WII 

- or 
is S 

q 3 
, sp: 

1 +pi 1 +pi 

I 

-__ 

TABLE 1 

equation similar to (5.9) should be used as an ‘inner’ asymptotic limit of (6.5). The 
difference, however, is insignificant, on the O( 1) timescale. A similar argument 
justifies the incompatibility of wI, II with initial conditions. 

7. The steep parts of the interface 
Heuristic considerations indicate that when (Eia1/p) is not small the detached part 

of the interface should be (at least piecewise) abruptly inclined with respect to the 
centrifugal field. It is therefore suggested to treat the interface as a ‘vertical’ cylinder 
r = r,(t) a t  the front r = rF( t )  and at  detachment radius rd(t )  (provided that 
ri < rcrit < 1). In  this case, the volume flux adjustments required by the Ei layers 
a t  these positions are performed via Ei ‘vertical’ shear layers, where the order of 
magnitude of the velocity correction is 

The radial velocity of ‘vertical’ interface, u,, is obtained as follows. The volume 
balance of mixture a t  r = rv is (cf. figure 9) 

Using this equation, the kinematic relationships (A 5) and (A 9), equations (2.15) 
and (2.8) one gets: 

@ + @ I .  2p (9-3) 
( l -a)*  El,, 1 

u, = s- rv+-- 

Time integration of this equation produces the loci rF( t )  and r d ( t )  subject to the 
initial conditions rF(0) = rl (Ti for s = 1 and 1 for s = - 1)  and rd(0) = rcrit(0). 
Approximations to these variables are rF( t )  of the PNK theory (Appendix B) and 
rcrit(t). 

The first term on the left-hand side of (7.2) represents the contribution of the basic 
separation velocity, while the enhancement (second) one becomes significant when 
E;a/2/3 is O(1). It is emphasized that the Coriolis acceleration required for this 
additional radial component is supplied by the viscous shear in the E; layer ; in the 
inviscid cores outside this layer the radial velocity is negligibly small. This is 
untypical of the gravitational parallel enhancement effect. 

There is an apparent similarity between the flow in the present Ei shear layer and 
that adjacent to the fluid front in the (linear) filling of a rotating cylinder studied by 
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f '  

t-2- 

FIGURE 9. Schematic volume flow in mixture region at perpendicular front rF( t ) ,  s = 1 

Ungarish & Greenspan (1984~~) .  In  addition, the azimuthal velocity discontinuities a t  
yF and can be smoothed via E': shear layers. The arrangement of the Ekman layers 
resembles the problem analysed by Moore & Saffman (lSCiS), where a strong 
recirculation in the 'vertical' layers has been predicted. The flow details in these 
regions are not pursucd in the present work. 

8. Example 
It  is cwnvcnitnt to illustrate several interesting results and implications of the 

prvscnt study via the following particular simple examples. 
Consider the containers of figure 2 :  the top is flat, zT = constant, yT = 0 ;  the 

bottom is a cone, zn = --s tanlyBlr, yR = constant = 30" and there is no inner 
boundary. r ,  = 0. Let aM = 1 and recall that s = 1 or - 1 for heavy or light particles 
mixtures . respec tivcly . 

For the sector where the pure fluid layer is thin (5.11) yields 

Using the appropriate o,,(x") obtained from (5 .2) ,  cf. figure 6, #(r)  is readily obtained 
(figure 10). This dctcrmincs the dependence of the flow variables on r ,  because these 
were alrcady defined as functions of L!! ,  e.g. figure 6(0).  The position rcrlt is clearly 
shown in figure 10. For small a1 and neglecting O(e-x) terms in (5.6) one gets 

which underestimates the exact value of lrcrlt - r,l. 
Figure 10 also emphasizes the sensitivity of the pure fluid layer structure to the 
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--k I 
s = - 1  

Ei 

28 0.1 0.05 
- aI = 0.5 

I s =  1 \ \ \  

r 

FIGURE 10. Pure fluid layer thickness vs. r for various (Ei /2p)  a, and a, = 0.1 in conical container 
yB = -s.30",yT = O,ri = 0. ( a )  Light particles, s = - 1 ; (b)-heavy particles, s = 1 .  The arrow 
indicates direction of change with time. rerit corresponds to S(cosyB)z = x .  

value of (Et//3) aI .  Since aI z a(0) eczSt, the change of the quasi-steady g(r) with time 
is qualitatively indicated by the arrow in these figures. 

For the sector where the pure fluid layer is thick, rEint (rcrit,rF), (6.1) gives: 

S S(0.931(p(a1))t) 
1 +0.931(p(a1))f '  WI = - WII = 1 +0.931(p(a1)):' 

It is anticipated that the interface in this region is of conical shape 

S(r ,  t )  = a( t )  + b( t )  r ,  (8.4) 

with a(0) = 0 and b(0)  = tan yB. Hence, cosy' = (1 +b2( t ) ) - i  and substituting in (6.5) 
with the aid of (2.12) yields, aftcr some algebra 

(8.5) 
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t CL 

0.0 0.10 
0.5 0.17 
1 .0 0.24 

Note: a( t )+b( t )  r2 = b(0). 

0.0 0.10 
0.5 0.05 
1 .0 0.02 

a arctan ( 6 )  'wit r2 (TFIPNK 

0 30".0" 0.25 0 1 .OO 
-0.039 36.9" 0.64 0.23 0.56 
-0.103 41 .go 1.40 0.32 0.44 

s = - 1  

s = l  

0 - 30".0" 0.92 
0.020 -22.0" 0.97 
0.029 -14.9" 0.99 

TARLE 2 

0 
0.79 
1.26 

The analytical solution of (8.5) can be readily obtained only in the limit aI  4 1 (thus, 
p ( a I )  = 1 @(a)  z a )  and reads: 

For small angles of inclination, V ( 0 )  6 1, this can be further estimated by 

The approximation ol,(t)/a(0) z exp ( -  2st) gives additional insight. Thus. according 
to (8.4)-(8.8), the Ekman suction represented by (E&/p) affects the position of the 
conical interface, but not its inclination b. 

The PNK approximation, Appendix B, yields 

Some results for a(0) = 0.1, Ei//3 = 1 ,  are presented in table 2 .  
Thus, in the s = - 1 case the thin pure fluid layer configuration ( $ 5 )  dominates the 

flow for t > 0.5, while in the s = 1 case rcrit, is close to the wall and the flow field 
displays the bulk structure discussed in $6.  

9. Concluding remarks 
The flow field of a separating mixture in a rotating axisymmetric container with 

inclined walls has been analysed. In  particular, the development and behaviour of 
the pure fluid layer adjacent to the inclined boundary from which particles are 
removed by the centrifugal buoyancy has been elucidated. It is concluded that this 
flow is governed by E = E&,lcot y"I/P, which turns out to represent the ratio 
between the Ekman layer suction and separation velocities. 
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When B is small the pure fluid layer thickens quickly to form an inviscid core 
surrounded by thin Ekman layers. The interface between the mixture and pure fluid 
cores is not perpendicular to the force field. This configuration, as investigated by 
Greenspan & Ungarish (1985a, b ) ,  is strikingly different from the gravitational 
settling in tilted containers investigated by Acrivos & Herbolzheimer (1979) and 
Schneider (1 982). 

However, for large values of B the inclined pure fluid layer is quasi-steady and its 
width does not exceed the Ekman thickness n(pu,*/p,* Q* cosyB)+. The Coriolis forces 
are counteracted by viscous shear. The remaining part of the interface is feasibly 
perpendicular to the centrifugal field and its radial motion may be augmented via the 
viscous effects in the accompanying Ei and Ei layers. Since this configuration 
displays resemblance to the gravitational one, an appropriate analog of the PNK 
theory can be employed. 

When E - 1 the locus rd NN rcrit roughly demarcates the merging of the thin viscous 
layer and the thick core of pure fluid, which coexist in the same container, cf. figure 
2. The intermediate region has not been considered in detail and is an interesting 
topic for further investigation. 

In  any case, the mixture core I and the pure fluid region I S  rotate in opposite 
senses. This 0(m, Q*) difference in angular velocity measured in the rotating system, 
is roughly equipartitioned between I and I S  when the pure fluid layer’s thickness is 
close to or beyond n ( p ~ / p ~  Q* cos yB)i. If the thickness is smaller, the rotation of the 
mixture core relative to the container diminishes accordingly. 

I n  the limit E+co, which corresponds to non-inclined bottom plate, no pure 
fluid layer develops, which violates the assumption of the present study. This 
configuration is essentially similar to the finite cylinder investigated by Ungarish 
(1986, 1988). Accordingly, for the large values of A( = Ei/l~:l/3H) considered here, the 
angular velocity is very small - in contradiction to the above-mentioned significant 
rotation which shows up when a pure fluid region exists. This makes a major 
difference between these two configurations and it can be argued that the critical 
angle of inclination, yB, is O(Ei). 

The present results are relevant to the enhancement of separation in large vessels. 
In this respect it is important to keep in mind the following basic difference between 
typical gravitational and centrifugal processes. The former is accompanied by a 
disengagement between the phases remarkably represented by the growth of the 
pure fluid volume and shrink of the mixture region. The latter type contains, in 
addition, the less observable but very important effect of squeezing: the local a 
monotonically varies in time in the mixture region a t  a rate essentially unaffected by 
the geometry of the boundaries. Consequently, the motion of the interface, which is 
a direct indicator of the settling performance in gravity field, may be much less 
pertinent in the centrifugal case. On the other hand, in the narrowly-spaced disk 
centrifuge considered by Amberg et al. (1986), the process is performed on small 
timescales during which a is practically constant. 

The corresponding flow fields, in meridionally sectioned tanks with inclined wall, 
display many different features, see Amberg & Greenspan (1987), where additional 
important referenccs are given. 

Other interesting effects may show up for larger values of /3 when the Coriolis forces 
on the particle induce an azimuthal component of relative velocity. This case has 
been treated in configurations where the Ekman layers are probably unimportant. 
Greenspan (1983), Ungarish & Greenspan (1984b) and Schaflinger et al. (1986). 
However, no theory is presently available for the two-phase flow in the Ekman layers 
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which are thinner than the dispersed particle size, as implied by /3 1. Therefore, the 
present investigation cannot be straightforwardly extended into that range. 

The foregoing results are based on a perturbation involving small /3, E ,  Ei, moderate 
a and angles of inclination and aspect ratio O(1). A more rigorous expansion (e.g. 
introducing parameters like /3 = bEi, E = cEi, etc., as suggested by Greenspan & 
Ungarish 1985 b )  may indicate validity restrictions of the present approach and the 
occurrence of additional effects. Moreover, the postulated form of the mixture viscous 
stress, of the relative velocity and of the mixture boundary conditions are partially 
debatable. These topics require a great deal of additional study, comparison to 
numerical computations and, above all, experimental verification. In  this respect it 
is worth emphasizing that several results of this work (e.g. the shape of the interface 
for different values of E )  can be checked by feasible demonstrative experiments of the 
type performed by Amberg & Greenspan (1987) and Greenspan (private com- 
munication). These experiments indeed corroborated the theoretical predictions 
concerning the absence and occurrence of the thin pure fluid layer for small and large 
E, respectively. Quantitative measurements of the leading variables x” and wI, which 
require more sophisticated equipment, will provide the additional necessary 
information for a critical comparison to the theoretical results obtained here. 

The author is grateful to Professor H. P. Greenspan for useful remarks and 
criticism and for experimental corroboration. This research was partially supported 
by the National Science Foundation, Grant Number 8519764-DMS. 

Appendix A 
Some useful kinematic relations between velocities and volume fluxes are 

summarized below : 
4 R  = q D - q C ,  

j ,  = a j+a( l -a )q , :  (A 9) 

a(1-a) 
j ,  = aq+- q R ,  1 +ca 



Shear layers in mixture separation in rotating containws with inclined walls 49 

nT-‘ 
C 

Y 

A 

I 
FKCRE 1 1 .  Schematic. section in a mixture of heavy particles settling in the y-direction in 

eompliance with PNK theory. 

Appendix B. Results of the PNK theory 
Refer to figure 11. Assume that the pure fluid layer and the opposite sediment 

layer on thc inclined walls are thin, a = a( t ) ,  the intcrface BC is perpendicular to 9 
and the relative velocity U , , - U ~  is 

UR = (B 1) 

Let Vm(t) be the instantaneous volume of mixture (bounded by ABCDA) which 
contains the total subvolume V,, of dispersed particles. The volumetric settling rate 
is given by: 

dt 

[aj+ a( 1 -a)  u,*A dA = a( 1 -a) 1 v R \ f i . 9 1 U ,  (B 2 )  
A D C  ADC 

where the boundary conditions j D - d  = 0 on ABC, j - d  = 0 on the sediment and solid 
walls, and equations (A 7) and (B 1) have been used. 

Since V, = aVm it  follows with the aid of (B 2 )  

Letting A,, denote the area of the front interface perpendicular to 9, it is observed 
that 

Consequently, (B 3)-(B 4) give 

In gravitational settlers vE and a are usually constant. For a two-dimensional tank 
of width 1 one therefore obtains : 
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t "  

FIGURE 12. Schematic view of a rotating container for illustrating the centrifugal analog of 
PNK theory; 0 < 0 < 2n. 

Here xB(t) and x c ( t )  are approximated by the points cut by the horizontal interface 
on the given walls of the container. For the configuration of figure 1 this reads 

(The enhancement follows from comparison to y = 0.) 
In the centrifugal case, x and y correspond to the axis of rotation and radial 

coordinate r ,  respectively. Moreover, vR = q,.iis given by (2.8) and daldt = -2@(a) 
via (2.9). The consequences of (B 2) and (B 5 )  usually require numerical (but still 
straightforward) solution. For example, for the container of figure 12 one gets, in 
dimensionless form, 
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Further approximations for the dilute case (@(a)  z a z a(0) ePzt; a(0) < 1) and 
initial state ( r i  4 1 )  yields: 

611, z $OHa(O) 1 +- tan y (1  -e-2t), [ 3H I 
where AVD represents the settled volume of dispersed particles. 
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